
© Nora Koch

Model-Driven Development of
Service-Oriented Systems

Nora Koch
LMU München and Cirquent GmbH

in co-operation with Martin Wirsing,
Philip Mayer, Matthias Hölzl, Rong Xie
and many other SENSORIA members

San Sebastian, Spain
June 23, 2009

ICWE 2009

© Nora Koch 2

Aim of the tutorial

to provide you with an overview to a model-driven development
approach for service-oriented systems that we are developing in
the SENSORIA project

methodological aspects of the engineering process

a modelling language

a model-driven development environment

© Nora Koch 3

Plan of the tutorial

I. Setting the scene
the context – SENSORIA

what we mean by “service-oriented systems”

what we mean by “model-driven development”

II. Engineering of service-oriented systems
development process

modelling

metamodel and model transformations

tool support

model-driven development @ work

pattern language

© Nora Koch 4

I. Setting the Scene

© Nora Koch 5

Context

Software Engineering for
Service-Oriented Overlay Computers

EU project

19 partners

2005 - 2010

more than 500
publications

2 spin offs

© Nora Koch 6

… more details

LMU Munich (Coordination)
Universitá di Trento
University of Leicester
Warsaw University
Technical University of Denmark at Lingby
Universitá di Pisa
Universitá di Firenze
Universitá di Bologna
Istituto di Scienza e Tecnologie della Informazione
University of Lisbon
University of Edinburgh
ATX Software SA
Telecom Italia S.p.A.
Imperial College London
University College London
Cirquent GmbH
Budapest University of Technology and Economics
S&N AG
School of Management of Politecnico di Milano

6th Framework (6FP)

Information Society
Technologies (IST)

Global Computing (GC2)

Future and Emerging
Technologies (FET)

© Nora Koch 7

Project overview

Rigorous approach to engineering service-oriented systems
integrating

foundational theories, techniques, and methods
pragmatic software engineering

© Nora Koch 8

… further details

www-sensoria-ist.eu

industrial and
academic forum

© Nora Koch 9

What we mean by “service-oriented systems”

Service
autonomous, platform-independent computational entity that can be
described, published, categorised, discovered
services can be consumed without having to care about their
maintenance, destruction, etc. (difference to components)

like gas, power, telephone, etc.

Service-Oriented Systems (SOS)
use loosely coupled services
massively distributed, interoperable, evolvable applications
consist of providing, consuming and publishing services, i.e.
establishing a community or marketplace

like applications spread over the web, e.g. online banking, hotel
reservation, flight booking, etc.

© Nora Koch 10

… more terminology

Service-Oriented Computing (SOC)
the compute paradigm behind service-oriented systems, i.e. for
organizing and utilizing distributed capabilities that may be under the
control of different ownership domains

“distributed computing” is such another paradigm

Service-Oriented Architecture (SOA)
an architectural style to realize SOC

“client/server” is an architectural style for realizing distributed computing

© Nora Koch 11

Stakeholders/Parties in service-oriented architectures

Service providers
offer services that correspond to ‘market’ demands

Service consumers/requesters
are applications, not people
are decoupled from the providers
binding to services at run time, not design time

Service brokers
manage registries
binds consumer and provider
offered as middleware in SOAs

service
consumer

find

bind

service
broker/discovery

service
provider

publishSOA triangle

© Nora Koch 12

What is a “model”

A description of (part of) a system written in a well-defined language
(Equivalent to specification) [Kleppe, 2003]

A description or specification of the system and its environment for some
certain purpose. A model is often presented as a combination of drawings
and text. [MDA Guide, 2003]

Vallecillo, ICWE 2004

© Nora Koch 13

Examples

City models
underground and bus maps,
commuting models,...

Building/house maps
floor plans, electric wiring,
water
and central heating pipes, etc.

Scientific models
mathematical models
statistical models
simulation models

Software system models
requirements (use cases)
structure (class diagrams)
behavioural models
choreography models
load balancing and
deployment models, ...

MDA proposed “everything is a
model”

a process is a model
a platform is a model
a transformation is a model
a metamodel is a model
a system is a model
a program is a model
a measure is a model
a test is a model
a pattern is a model
…

© Nora Koch 14

Characteristics of models

Abstract
emphasize important aspects,
hide irrelevant ones

Understandable
expressed in a form readily
understood by users

Accurate
faithfully represent the
modelled system

Predictive
can be used to derive correct
conclusions about the system

Inexpensive
cheaper to construct and study
than the system

Selic, IEEE, 2003

PCB and PCB model

© Nora Koch 15

Usefulness of models

Specify the system
structure, behaviour, ...
separate concepts at different
conceptual levels
communicate with stakeholders

Understand the system
if existing (legacy applications)

Validate the system
detect errors and omissions in
design ASAP

mistakes are cheaper at this
stage

prototype the system (execution
of the model)
formal analysis of system
properties

Drive implementation
code skeleton and templates
complete programs (if possible)

Vallecillo, ICWE 2004

© Nora Koch 16

What is meant by “model-driven development”

Model-Driven Development/Engineering (MDDTM/MDE)*
refers to a range of engineering approaches that are based on the
use of software models as a primary form of expression

has a focus on architecture and corresponding automation

objective is to generate code from the models

Model-Based Development

instead expresses that models are mainly used for communication
and documentation

Model-Driven Architecture (MDATM)*
is the best known MDE initiative

* Note that MDA, MDD are trademarks of the OMG; MDE is not

© Nora Koch 17

MDA terminology

Computational Independent Model (CIM)
describes the business context and business requirements
focuses on the environment of the system

Platform Independent Model (PIM)
specifies structure and functionality of the software system
independent of software technology platforms
suitable for use with a number of different platforms

Platform Specific Model (PSM)
describes the realization of the software systems with
respect to the chosen software technology platforms

OMG MDA Guide,2004

© Nora Koch 18

MDA in a nutshell

MDA supports the idea of
designing software systems using model(s) in the development

CIM, PIM, PSM
transforming CIMs to PIMs, PIMs to PIMs and PIMs to PSMs

based on model transformation technologies
models are first class entities

MDA promotes to build different views
(models) of a system following a
separation of concerns

MDA/MDE is changing the software
development paradigm from code-
centric to model-centric

More about MDD,MDE, MDA, ... later

© Nora Koch 19

II. Engineering of Service-Oriented Systems

© Nora Koch 20

Motivation

Service-oriented architectures (SOAs)
promise to organize and understand organizations, communities and
systems maximizing agility, scalability and interoperability
built by IT industry in an ad-hoc and undisciplined way

Challenges for service-oriented computing (SOC)
specification of correct behaviour of SOAs
automated composition of services (orchestration)
long running transactions
performance, security and safety
deployment and re-engineering

© Nora Koch 21

MDE in SENSORIA

SENSORIA approach to model-driven service engineering
from business models to implementations
via model transformations

Formal analysis
functional service verification
type correctness
sensitivity analysis
scalability analysis

Flexible service development support
service development patterns
development environment

© Nora Koch 22

… more details

Modelling front-end
Service-oriented applications are designed using high-level visual
formalisms such as the industry standard UML or domain-specific
modelling languages.

Hidden formal analysis of services
Back-end mathematical model analysis is used to reveal performance
bottlenecks, or interactions leading to errors or violation of service
contracts.

Automated model transformations
Formal representations are generated by automated model
transformations from engineering models.

Service deployment
As a result, service models of proven quality serve as the basis for
deployment transformations to generate configurations for standards-
compliant platforms.

© Nora Koch 23

“Model” of the model-driven development process

Business Modelling
SOA Architecture
e.g. requirements

Improvement
Preparing results for

improving models

Transformation
Translating models
to formal languages

Design
Modelling SOA

applications

Code Generation
Creating executable code,

e.g. BEPL/WSDL

Analysis
Verifying properties

of SOA models

SENSORIA Development Environment

© Nora Koch 24

Project results

Languages
Techniques
Methods
Tools

to support this development process of service-oriented systems

© Nora Koch 25

... concrete results

Service ontology
Modelling languages

UML4SOA, SRML, StPowla
Process calculi

SCC, SOCK, Stock, COWS, …
Languages for programming service-oriented systems

Jolie
Transformation tools supporting MDE process

SRML Use Case Wizard
UseCases2SRML

MDD4SOA
UML2BPEL/WSDL, UML2Jolie, UML2Java
BPEL/WSDL transformers (ActiveBPEL, Tomcat)

VIATRA
SOA2WSDL, UML2Axis

© Nora Koch 26

... concrete results (continued)

Languages, tools and techniques for qualitative and quantitative
analysis

StockKlaim, MoSL, PEPA, WS-Engineer, CMC/UMC, Lysa
Service broker

Dino
Re-engineering tool

CoreStudio
CASE tool

SRML modelling environment
Tool suite

SENSORIA Development Environment (SDE)

© Nora Koch 27

Business Modelling
SOA Architecture
e.g. requirements

Improvement
Preparing results for

improving models

Transformation
Translating models
to formal languages

Design
Modelling SOA

applications

Code Generation
Creating executable code,

e.g. BEPL/WSDL

Analysis
Verifying properties

of SOA models

SENSORIA Development Environment

Model-driven development process

© Nora Koch 28

Modelling languages

Objective is to have a domain specific graphical representation
and clear semantics for service-oriented concepts

Option 1: Definition of a proprietary language, like SENSORIA
Reference Modelling Language (SRML)

high cost: requires the definition of all required domain specific concepts
and proprietary tools

Option 2: Use of a standard, like Unified Modeling Language
(UMLTM), Business Process Modeling Notation (BPMNTM)

diagrams are more difficult to read

Option 3: Define a UML2 profile
using the extension mechanism that allows to customize the UML for
specific domains and platforms

defining stereotypes, tagged values and constraints to restrict and
extend the scope of UML

UML CASE tools can be used

© Nora Koch 29

Option 1: SENSORIA Reference Modelling Language
(SRML)

Modelling language with a formal semantics
Offers descriptions of business logic based on conversational
interactions
Inspired by SCA (standards proposed by IBM, BEA, Oracle, SAP,
Siebel,…)
Proprietary language needs proprietary CASE tool

www.sensoria-ist.eu
Teaching material, tutorial, June 2009

© Nora Koch 30

Option 3: UML2 profile

Main Aim: to have a powerful yet readable graphical modelling
language for SOAs – based on UML

“minimalist” extension
use UML constructs wherever possible
use other extensions if available
only add new model elements where needed

reducing efforts of building SOA models
covering domain specific aspects, such as

service contracts
long running transactions and compensation
loose coupling of services

UML4SOA
Secondary Aim: to employ transformers from such models to
common implementation languages (BPEL, Java...)

MDD4SOA

© Nora Koch 31

SoaML profile (OMG standardization process beta1 version)
for structural aspects of services

UML4SOA profile (developed within the scope of the project)
for behavioural aspects, e.g. orchestration
for non-functional aspects
for reconfiguration
for policies
for requirements

MARTE profile (OMG standardization process beta2 version)
for performance analysis

UML extensions for SOA modelling

© Nora Koch 32

UML4SOA, SoaML, MARTE

Defined as UML profiles
provide a set of elements for modelling SOAs

use UML extension mechanisms (stereotypes)

no changes to UML (exception SoaML propose one change)

Use of the profiles
to build models at different levels of abstraction

in combination with UML model elements

is not a prescriptive approach

© Nora Koch 33

Service Oriented Architecture Modeling Language

Answer to Request of Proposal of the OMG
for a UML Profile and Metamodel for Services (UPMS), Sept. 2006

Submission and supporters
SINTEF, Norway (co-ordination), European Software Institute (ESI)
Capgemini, Fujitsu, Hewlett-Packard, IBM, Telelogic AB, Thales
Group, France Telecom R&D, etc
Univeristy of Insbruck, University of Augsburg, University of Athen
SHAPE project (FP7) is the main contributor

Results
Merge of approaches, June 2008
1st revised submission, August 2008
2nd revised submission, November 2008

Meetings SoaML and UML4SOA groups
EDOC 2008, Munich, Sept. 2008
next, Sept. 2009

© Nora Koch 34

MARTE profile

Defined for modelling of real-time and embedded systems

Concerns also model-based analysis, i.e. provides facilities to
annotate models with information required to perform specific
model analysis

Focuses on performance and schedulability analysis

© Nora Koch 35

SOA models in the MDA context

Computation
Independent
Model (CIM)

Platform
Independent
Model (PIM)

Platform
Specific
Model (PSM)

Business Model

Design Model

Technical Specification

Enterprise Services
Roles, Collaborations, Dependencies, Workflows

Services
Componentes, Interfaces, Messages, Data

Technical Services
WSDL, BPEL, XML Schema, Java, Jolie

Source: Data Access Technologies, Inc

R
efinem

ent &
 A

utom
ation

© Nora Koch 36

SOA modelling by example

Finance Case Study: Credit Portal Scenario

Stakeholders (parties) of the service-based scenario are customers,
clerks and supervisors.
Login is required, if a customer wants to request a credit by using the
credit portal.
The credit request process requires from the customer credit data,
security data and balance data
Based on the uploaded information the system calculates a rating that
is used for an automatic decision, a clerk or supervisor decision.
In case of a positive decision the process informs the customer and
waits for his decision.
Once the credit offer is accepted, the process stores the credit offer in
an agreement system and the process is finalised.
In case of a negative decision the customer is informed about this
decision and the process ends, too.

© Nora Koch 37

Process as orchestration of services
UML4SOA

UML activity diagram selected for the representation of
orchestration of services

A scope is used to group
service specific actions

and scopes. It may have
associated event,

exception and
compensation handlers.

A scope can be
represented as a UML
StructuredActivityNode

or an Activity

A scope is used to group
service specific actions

and scopes. It may have
associated event,

exception and
compensation handlers.

A scope can be
represented as a UML
StructuredActivityNode

or an Activity

© Nora Koch 38

Specifying service capabilities

Capabilities are used
to identify needed services

to organize them into catalogues or network of capabilities

prior to allocating those services to particular service providers
and requesters

SoaML

SoaML Specification for the UML Profile and
Metamodel for Services (UPMS), OMG 2008

A capability is the
specific ability to provide
a service. It is modelled

as UML class.

A capability is the
specific ability to provide
a service. It is modelled

as UML class.

© Nora Koch 39

Identifying parties involved in SOAs

A participant represents some
party that provides and/or

consumes services. It is modelled
as UML class.

A participant represents some
party that provides and/or

consumes services. It is modelled
as UML class.

SoaML

Provider and consumers of services are represented as
participants

in the business domain: person, organization or system
in the systems domain: system, application or component

Participant can play the role of
providers in some interactions
consumers in others

© Nora Koch 40

Modelling service contracts

A service contract specifies the service without regards for realization or
implementation.
A UML2 collaboration defines a set of cooperating entities to be played by
instances (its roles), as well as a set of connectors that define
communication paths between the participating instances.

A service contract is the
specification of the agreement

between providers and consumers of
a service. It is modelled as a UML

collaboration.

A service contract is the
specification of the agreement

between providers and consumers of
a service. It is modelled as a UML

collaboration.

A dependency represents the
binding of the service contract to
the provider or the consumer of

the service.

A dependency represents the
binding of the service contract to
the provider or the consumer of

the service.

A participant can play different roles.A participant can play different roles.

SoaML

© Nora Koch 41

Representing service architecture

A services architecture
describes how participants work
together for a purpose by proving
and using services expressed as
service contracts. It is modelled

as a UML collaboration.

A services architecture
describes how participants work
together for a purpose by proving
and using services expressed as
service contracts. It is modelled

as a UML collaboration.

Provider of an orchestrated
service

Provider of an orchestrated
service

SoaML

© Nora Koch 42

Participant architecture

It is important not to over-specify any of the parties, i.e. usually it is
not required to specify the internal structure of a participant
allowing each party maximum freedom in how they achieve their
goals
However, it is possible to provide a high-level services
architecture of a participant
Defines how a set of internal and external participants use
services to implement the responsibilities of the participant

SoaML

A participant architecture
represents the architecture of a

specific participant. It is
represented as a UML class or

component.

A participant architecture
represents the architecture of a

specific participant. It is
represented as a UML class or

component.

© Nora Koch 43

SOA models in the MDA context

Computation
Independent
Model (CIM)

Platform
Independent
Model (PIM)

Platform
Specific
Model (PSM)

Business Model

Design Model

Technical Specification

Enterprise Services
Roles, Collaborations, Dependencies, Workflows

Services
Componentes, Interfaces, Messages, Data

Technical Services
WSDL, BPEL, XML Schema, Java, Jolie

Source: Data Access Technologies, Inc

R
efinem

ent &
 A

utom
ation

© Nora Koch 44

Refining specification of participants with ports

Add ports for provided and consumed services
A port has as type a service interface or an interface

A full specification of a
participant includes ports
for every service contract
in which the participant
participates within the

service architecture. Two
types of ports: service

point and request point

A full specification of a
participant includes ports
for every service contract
in which the participant
participates within the

service architecture. Two
types of ports: service

point and request point

SoaML

© Nora Koch 45

Modelling service interfaces

A request point is a port for
requesting (consuming) a service

A request point is a port for
requesting (consuming) a service

A service point is a port
for providing a service.

A service point is a port
for providing a service.

A service interface
implements (“provides”) provider interfaces (represented as realisation)
“requires” consumer interfaces (represented as a «use» dependency)

A service interface allows
for connection between the

service consumer and
provider. It is modelled as

UML class.

A service interface allows
for connection between the

service consumer and
provider. It is modelled as

UML class.

SoaML

© Nora Koch 46

Service point and request point
Reverse interfaces

A service point provides the
provider interface and requires the

consumer interface.

A service point provides the
provider interface and requires the

consumer interface.

A request point requires the provider
interface and provides the consumer
interface (reverse of service point)

A request point requires the provider
interface and provides the consumer
interface (reverse of service point)

Need of a
change in UML

Need of a
change in UML

A service interface
implements (“provides”)

provider interfaces
(represented as

realisation)

A service interface
implements (“provides”)

provider interfaces
(represented as

realisation)

A service interface
“requires” consumer

interfaces (represented as a
«use» dependency)

A service interface
“requires” consumer

interfaces (represented as a
«use» dependency)

SoaML

© Nora Koch 47

Service point and request point
Reverse Interfaces SoaML

A UML interface is
used to represent the
required and provider
interfaces of the ports.

A UML interface is
used to represent the
required and provider
interfaces of the ports.

© Nora Koch 48

Change in UML Metamodel
Required by SoaML

Port is modified to indicate the direction of a Port, whether
the Port is providing the operations available through a Port or
the Port is consuming them

Current situation in the UML
conjugate types must be created explicitly

© Nora Koch 49

Interface behaviour

UML4SOA
propose protocol state
machine

SoaML
propose activity diagrams or
sequence diagrams

UML

© Nora Koch 50

Service channel

Communication path between service points and request points
within an architecture that

connects consumers and providers
defines the coupling in the
system
extends UML connector

SoaML

Connection possible if request
and service point are compatible:

both have the same port type
(interface or service interface)
type of the service point is a specialisation or realisation of the
type of the requested point
both have compatible needs and capabilities, i.e. the service
must provide an operation for every operation used through the
request and reverse

© Nora Koch 51

Orchestration of services
UML4SOA

Service orchestration is the process of combining existing
services to form a new service to be used like any other
service.

partner services
message passing
among requester and
provider
long-running
transactions
compensation

Key distinguishing concepts

© Nora Koch 52

Message passing among requester and provider
Synchronous and asynchronous service invocation

A raise action causes
normal execution flow
to stop and invokes

associated exception
handlers.

A raise action causes
normal execution flow
to stop and invokes

associated exception
handlers.

UML4SOA

Reply is used for the
reception of a

message decoupled of
the sending process

Reply is used for the
reception of a

message decoupled of
the sending process

Service interaction send
sends a message. Does

not block.

Service interaction send
sends a message. Does

not block.

Service interaction
receive blocks until

message is received.

Service interaction
receive blocks until

message is received.

Service interactions
send&receive,

receive&send denotes a
sequential order of these

actions.

Service interactions
send&receive,

receive&send denotes a
sequential order of these

actions.

© Nora Koch 53

Detailing service invocation
Partner services and data handling UML4SOA

Pins containing interaction information
lnk: partner

snd, rcv: data to be send or received

Pins containing interaction information
lnk: partner

snd, rcv: data to be send or received

Implicit declaration of
variable in a rcv pin.

Implicit declaration of
variable in a rcv pin.

Use of
variable after
declaration

Use of
variable after
declaration

Variables belong to the
scope they are declared in
Use of “::” for referring of
variables of parent scopes

Variables belong to the
scope they are declared in
Use of “::” for referring of
variables of parent scopes

Accept activity is part of the scope Decision

© Nora Koch 54

Declaration of structured types
extends metaclass data type and class

Data handling

A message type is
used to specify

information exchanged
between service
consumers and

providers (message
passing).

A message type is
used to specify

information exchanged
between service
consumers and

providers (message
passing).

SoaML/UML4SOA

Use in behavioural diagrams
support for typed, scoped variables in the orchestration
data handling support A data action can be

used to explicitly
declare the type of a

variable or for
manipulation of data

(copy, calculation, etc).

A data action can be
used to explicitly

declare the type of a
variable or for

manipulation of data
(copy, calculation, etc).

© Nora Koch 55

Long running transactions

A compensation Handler
is added using a

compensation activity
edge.

A compensation Handler
is added using a

compensation activity
edge.

The scope modelling the
compensation handler will be
triggered by a compensate or

compensateAll.

The scope modelling the
compensation handler will be
triggered by a compensate or

compensateAll.

UML4SOA

Require compensation mechanisms, e.g. compensation handlers

© Nora Koch 56

Compensation
UML4SOA

A compensateAll
triggers all active

compensation
handlers.

A compensateAll
triggers all active

compensation
handlers.

© Nora Koch 57

SOA model elements and diagram types

send, receive, send&receive
reply, raise, pick, wait
lnk, snd, rcv
compensate, compensateAll
compensation, exception, event
data

scopeBehavioural
aspects

class diagram
composite structure diagram
activity diagram
sequence diagram
state machine

class diagram
composite structure diagram
activity diagram

Diagram
type

service point
request point
service interface
message type

capabilities
participants
service contract
service architecture
participant architecture

Structural
aspects

Design modelBusiness model

+ use of plain UML, e.g. SOA's protocols

© Nora Koch 58

Quality of services

Defined by non-functional properties (NFP)

Example: Credit Portal Scenario

The Portal and the CreditRequest should communicate via a secure
and reliable connection

All requests sent to the CreditRequest should be acknowledged

As the credit request handles confidential data, all requests should be
encrypted in order to protect the privacy of the customers

Messages sent by the CreditRequest must be clearly accountable, i.e.
non-repudiation of messages must be guaranteed

© Nora Koch 59

Modelling approach for NFP of services

Template for a
service level

agreement (SLA)

© Nora Koch 60

Modelling a concrete configuration

Concrete SLA

© Nora Koch 61

Coming back to MDE

M
odels

M
odel transform

ations

M
eta m

odels

MDE

MDE approaches
are based on the constructions of models
propose transformation of models
implement model transformations based on the metamodel of the
modelling language

MDE approaches require languages for
specification of models

UML, BPMN, …

description of metamodels
UML, MOF, OCL, …

definition of model transformations
Java, graph transformations, ATL, QVT…

© Nora Koch 62

What is meant by “metamodel”

A model of a modelling language [Seidewitz, 2003]
That is, a metamodel makes statements about what can be expressed in the
valid models of a certain modelling language.

A model that defines the language for expressing a model [MOF, 2000]

A meta-metamodel is a model that defines the language for expressing a
metamodel,e.g. Meta Object Facility (OMG). The relationship between a
meta-metamodel and a metamodel is analogous to the relationship
between a metamodel and a model.

© Nora Koch 63

MDA principles

M3

M2 M2M2

M1 M1 M1 M1

Models are specified using a modelling language (M1)
A modelling language is described by a metamodel (M2)
Metamodels belong to a library of domain specific languages
(DSLs)
Metametamodel: there is a unique language for describing
these metamodels (M3), i.e. the Meta Object Facility (MOF)

© Nora Koch 64

Four-layers metamodel hierarchy

SPEM

MOF

UML CWM

a UML
model

another
UML model

a particular use
of a UML model

another use
of a UML model

Metametamodel

Metamodel

Model

M3

M1

M2

conforms to

conforms to

conforms to

M0

System

represented by

th
e

m
od

el
lin

g
w

or
ld

th
e

re
al

w
or

ld

© Nora Koch 65

Four-layers metamodel hierarchy
(example)

© Nora Koch 66

Language definition mechanisms

Options for defining a new modelling languages
New MOF-based modelling language
UML extension (profile)

© Nora Koch 67

UML Profile

Extension of the UML for domain specific model element
providing a different notation
enriching model elements with additional semantics (e.g. request
point)
representation of domain specific patterns (e.g. compensation)
annotations (marks) facilitating model transformations in a model-
driven approach (e.g. lnk)

Use of extension mechanisms of the UML
stereotypes
tagged values
constraints

Risks
too many stereotypes
selection of inadequate UML metaclass
decorative and redefined stereotypes ()

© Nora Koch 68

Types of UML extensions

Decorative
vary only the concrete syntax (visual presentation)
few value

Descriptive
extend the syntax of a language such that additional information can
be expressed
limited power as purely syntactical

Restrictive
descriptive and impose semantic restrictions
has the capability to define a meta language on top of the base
language

Redefined
modify the core semantics of the language elements
no need of a base language

Glinz et al., UML 1999

© Nora Koch 69

Creating a UML profile

Specification of a metamodel for the specific domain
1. identification of the domain specific concepts and their relationships

2. construction of a model capturing concepts and relationships
(metamodel)

3. UML elements for this concepts? (minimalist extension)

Specification of the profile
1. creation of stereotypes for identified elements (#3 is false)

2. identification of appropriate UML metaclasses
3. stereotypes and metamodel elements related by an “extension”

(multiple metaclasses)
4. define semantics of new elements

© Nora Koch 70

Several profiles for SOAs in SENSORIA

Profiles for modelling different aspects of SOSs: structural aspects (SoaML),
behavioural aspects (Orchestration), non-functional properties (NFP),
reconfiguration (Modes), policies (StPowla), requirements (SRML), and
performance (MARTE).

© Nora Koch 71

UML4SOA metamodel: Orchestration Package
Conservative extension of the UML

UML metaclass

© Nora Koch 72

SoaML metamodel

© Nora Koch 73

Profile metamodel mapping (excerpt)

© Nora Koch 74

Extension model (excerpt)

UML extensionUML extension

© Nora Koch 75

Specification of „new“ elements

Service Interface (excerpt)
Description

defines the interface to a Service Point or Request Point and is the type
of a role in a service contract….

Extended Metaclass
Class

Attributes
no new attributes

Associations
no new associations

Constraints
1. A Service Interface must not define the methods for any its provided

operations or signals….
Semantics

A Service Interface defines a semantic interface to a Service or Request.
That is, it defines both the structural and behavioural semantics of the
service necessary for consumers to determine if a service typed by a
Service Interface meets their needs, and for consumers and providers to
determine what to do to carry out the service…

Notation
Examples
Additions to UML2

© Nora Koch 76

SOA Models in the MDA Context

Computation
Independent
Model (CIM)

Platform
Independent
Model (PIM)

Platform
Specific
Model (PSM)

Business Model

Design Model

Technical Specification

Enterprise Services
Roles, Collaborations, Dependencies, Workflows

Services
Componentes, Interfaces, Messages, Data

Technical Services
WSDL, BPEL, XML Schema, Java, Jolie

Source: Data Access Technologies, Inc

R
efinem

ent &
 A

utom
ation

© Nora Koch 77

Programming language Jolie

Service-oriented paradigm
in Jolie everything is a service
used to create new services and compose existing ones
mechanisms for managing data, communication and service
composition services

Suitable for programming distributed applications
no distinction between local and remote services
endpoint locations and communication protocols can be changed
dynamically thus allowing to build a dynamic system, fully
reconfigurable at runtime

main {
getInfo(request)(response) {

getTemperature@Forecast(request.city)(response.temperature)
|
getData@Traffic(request.city)(response.traffic)

};
println@Console("Request served!")()
}

service concurrently
retrieves information

from a forecast
service and a traffic

service:

© Nora Koch 78

Integration with other technologies
Jolie can be used for interacting with existing web services, own
services and integrating legacy systems and current technologies
within a SOA

Open-source project
Java Orchestration Language Interpreter Engine
Spin-Off of the University of Bologna

Jolie

© Nora Koch 79

Verification in model-driven service engineering

Business Modelling
SOA Architecture
e.g. requirements

Improvement
Preparing results for

improving models

Transformation
Translating models
to formal languages

Design
Modelling SOA

applications

Code Generation
Creating executable code,

e.g. BEPL/WSDL

Analysis
Verifying properties

of SOA models

SENSORIA Development Environment

© Nora Koch 80

Quantitative and qualitative analysis methods

Analysis using formal techniques
performance analysis
service level agreement analysis
security and behavioural analysis

Methods and tools based on
stochastic simulation
model checking
logic

Model-based analysis
in early phase of the development process

© Nora Koch 81

Performance analysis at model level

Using formal techniques for SOA
prediction of service level agreement and performance

annotation of UML diagrams with rates of time consuming actions of the
workflow (stereotypes of MARTE profile)
translation of the activity diagrams into stochastic process calculus PEPA
prediction with the tool SRMC (SENSORIA Reference Markovian Calculus)

Gilmore et al, LNCS 4346,2006

PaStep a basic
sequential execution step

on a host processor.

PaStep a basic
sequential execution step

on a host processor.

© Nora Koch 82

Model transformations

Model transformation pattern (J. Bézivin, 2004)

Translation performed by a
transformation engine that executes
transformation rules
Set of rules

seen as a model
based on a transformation
metamodel

Goal is automatic translation between source and target models

MDA model
transformations

CIM2PIM
PIM2PIM
PIM2PSM

© Nora Koch 83

MDD4SOA and VIATRA

MDD4SOA
Transformation mechanisms from models to executable
orchestration of services

source: UML4SOA models
target platforms: BPEL/WSDL, Java, Jolie
fully automatic generation of code
implemented in Java

VIATRA2 ((VIsual Automated model TRAnsformations)
general tool based on graph transformations and abstract state
machines
used within the project for deployment transformations

Eclipse project

Mayer et al, EDOC 2008
Varró et al,SAC, 2006

© Nora Koch 84

Tool support

XFinance, eUniversity,
Automotive

ModellingUML4SOA profile

Tool Area Case Study Integratio
n in SDE

SDE Integration All X

MDD4SOA
Transformer

Transformation Finance, eUniversity,
Automotive

X

VIATRA2 Transformation Finance, eUniversity X

LTSA/WS-Engineer Analysis eUniversity X

PEPA Analysis eUniversity X

LySa Analysis Finance X

UMC/CMC Analysis Automotive X

DINO Runtime Finance, Automotive X

SRML Editor Modelling - -

ADR2GRAPHS Visualisation Automotive -

Jolie Modelling eUniversity X

Reengineering Tool Reengineering Finance -

© Nora Koch 85

SDE: SENSORIA Development Environment

Eclipse-based integration platform for developing SOA-based
software

SDE Core
integrated tools

Distinctive features of the SDE Core
Uses a SOA approach itself
Tools are orchestrated by the specification of a tool chain
Tool-As-Service Concept: Orchestrations of tools are now usable as
tools themselves
Enables SOA developers to use tools without the need to understand
the underlying formal languages

Tool chain in SDE
defined as a SDE script
drawn with the graphical orchestration tool
executable in the Eclipse environment

© Nora Koch 86

MDD4SOA@work

Demonstration’s aim
to show how model-driven development of SOSs can work

Consists of
1. building an orchestration model with UML4SOA
2. defining a tool chain of transformations in SDE

model2model, model2code, deployment
3. execution of the tool chain

input: UML4SOA model
output: application

4. running the deployed application
5. changing the model
6. go to 3

© Nora Koch 87

1. Building an orchestration model with UML4SOA

Automotive Case Study: Scenario On Road Assistance
Driver is on the road with his car
Diagnostic system reports a low oil level; the car is being no
longer driveable
Driver contacts the on road assistance system
Car position is located
System finds appropriate services in the area (garage and rental
car)
Based on the drivers preferences the best services are selected
Driver is required to deposit a security payment by credit card

On road assistance as orchestration of services
services: car position, finding garage and car rental station,
selection of best service, charge credit card

Application: visualisation of invoked services
Each service has associated a user interface (web page)

© Nora Koch 88

Orchestration model for “On road assistance”

© Nora Koch 89

2. Defining tool chain in SDE

Converter UML4SOA to BPEL/WSDL
transformation from UML2 models to an Intermediate Orchestration
Model (IOM)
transformation from IOM to BPEL/WSDL*

Converter BPEL/WSDL to active BPEL/WSDL
transformation of BPEL/WSDL* to code executable by ActiveBPEL
Engine 4.0 (open source)

Replacement of namespace and service location within BPE /WSDL
Create process deployment description files (catalog.xml, *.pdd)

Transformation active BPEL to interactive BPEL
transformation for adding user interaction mechanisms

additional receive & reply for each invoke for communication between
user and BPEL process
extension of reply with a list of next actions

Deployment on a web server (Tomcat)

© Nora Koch 90

Tool chain in SDE
Graphical orchestration of tools (Eclipse plug-ins)

tool chain
execution
tool chain
execution

© Nora Koch 91

3. Executing tool chain
Input

outputDir
model
config

outputDir
model
config

© Nora Koch 92

Looking at transformation results
BPEL model

© Nora Koch 93

4. Running the deployed application
Home Page - Setting of Preferences

© Nora Koch 94

4. Running the deployed application
Credit card charge

© Nora Koch 95

4. Running the deployed application
Car position

© Nora Koch 96

4. Running the deployed application
Garage and rental car services

© Nora Koch 97

4. Running the deployed application
Selection best services

© Nora Koch 98

5. Changing the orchestration model

© Nora Koch 99

6. Back to the tool chain

tool chain
execution
tool chain
execution

© Nora Koch 100

Looking at transformation
results: BPEL model

© Nora Koch 101

4. Running the deployed application again
Home Page - Setting of Preferences

© Nora Koch 102

4. Running the deployed application again
Car position

© Nora Koch 103

4. Running the deployed application again

Different order of web pages
Credit card charge at the end
Only list of garages
etc.

© Nora Koch 104

Selection of tools, techniques, methods, languages, …

SENSORIA approach, in particular the integrated tools in SDE
encompasses

the whole development process of service-oriented software
from systems in high-level languages to deployment and re-engineering

Difficulty to identify the “best” techniques and tools (SDE plug-in)
for solving a particular problem arising in the development process

To ameliorate this problem we are developing a catalogue of patterns that
serves as an index to our results

illustrates, in a concise manner, the advantages and disadvantages of the
individual techniques

© Nora Koch 105

Scalability analysis pattern

Context
a large-scale service provider using replication to scale his service provision to
support large population.

Problem
understanding the impact of changes in number of servers or number of users
subscribed to his service

Forces
being able to support large-scale use is an indicator of quality in planning
heavy demand due to large user populations require service replication, but
replication represents costs

Solution
develop a high-level model of the system and apply continuous–space
analysis to the model to make predictions about the large-scale system

Related patterns
sensitivity analysis

Tools
PEPA Eclipse plug-in project

© Nora Koch 106

Patterns catalogue

Patterns defined so far …
Service modelling

Service specification and analysis

Functional service verification

Sensitivity analysis

Scalabilitiy analysis

Declarative orchestration

Model-driven development

A pattern-based approach to augmenting service engineering with formal
analysis, transformation and dynamicity, Martin Wirsing et al., ISOLA 2008

© Nora Koch 107

Conclusions

Service Engineering Approach
modelling of SOSs
metamodels and UML profiles for SOC
transformations to analysis models
automatic generation of SOAs
pattern language
MDD4SOA@work

“is everything a model”

© Nora Koch 108

Bottom line: Ideas to take home

Relevance of domain specific modelling language
UML profile
must be simple, few constructs

Automated development approach
model-based
model-driven (transformations)
pattern-based

Importance of flexible tool support
easy (graphically) integration of diverse tools

© Nora Koch 109

Publications

OMG, www.omg.org
SENSORIA project, www.sensoria-ist.eu
SHAPE project (SoaML), www.shape-project.eu

© Nora Koch 110

Questions?

Comments?

Further information
www.sensoria-ist.eu

Thank you for your time and attention !

ICWE 2009
San Sebastian, Spain

June 23, 2009

Nora Koch
kochn@pst.ifi.lmu.de

